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LETTER TO THE EDITOR 

The tri-critical point in the Blume-Emery-Griffiths 
model 

J W Tucker 
Physics Department, Sheffield University, Sheffield S3 7RH, UK 

Received 25 October 1988 

Abstract. The tri-critical behaviour of the spin-one Blume-Emery-Griffiths king model is 
investigated by means of the recently developed effective-field theory based on an extension 
of the Honmura-Kaneyoshi technique. The dependence of the position of the tri-critical 
point on the relative strengths of the bi-quadratic and bi-linear exchange interactions is 
investigated for the honeycomb, square and cubic lattices. 

Recently, we considered the application of the effective-field theory (EFT) based on the 
differential operator technique of Honmura and Kaneyoshi (1979) to the Blume-Emery- 
Griffiths (BEG) model (Tucker 1988). We pointed out that a previous version of the 
theory presented by Fittipaldi and Siqueira (1986) contains an unfortunate error that 
leads to results that are in some cases even qualitatively wrong. A correct treatment of 
the effective field equations was presented and it was found that the results then obtained 
resembled those of the cluster variational method in pair approximation, and of other 
methods. In that paper we considered only the isotropic BEG model in which the single- 
ion anisotropy is absent. The anisotropic model is, however, more interesting, in that 
for certain values of the single-ion anisotropy the system possesses a tri-critical point at 
which the phase transition changes from second to first order. The usefulness of EFT in 
studying tri-critical points was demonstrated by Kaneyoshi (1986, 1987a) in the case of 
the Blume-Cape1 model (the BEG model with zero bi-quadratic exchange). However, 
recent applications of the method of the BEG model (Kaneyoshi 1987b, Kaneyoshi et a1 
1988, Kaneyoshi and Sarmento 1988) are defective in that they use as their starting point 
the effective-field equations of Fittipaldi and Siqueira referred to above. The purpose 
of this Letter is to study the tri-critical points using our version of the effective-field 
theory. General expressions that enable the tri-critical points in the BEG model to be 
obtained are derived and numerical values for the honeycomb, square and cubic lattices 
presented. 

The Hamiltonian of the spin-1 BEG model is given by 

i 

where J and J’ are the nearest-neighbour bi-linear and bi-quadratic exchange constants 
and D is the single-ion anisotropy. In discussing the results it is conventional to introduce 
the notation IX = J ’ / J  and a’ = D/Jz where z is the coordination number of the lattice. 
As shown by Siqueira and Fittipaldi (1985), use of an extended Honmura-Kaneyoshi 
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technique enables the expressions for the magnetisation and the quadrupolar moment 
to be cast in the form 

m = V g z )  = (eXP(DxPEd + D,PE,))f(x,y)l,,o,y-o 

4 = (qz) = (exp(D,PE, + D,PE,))g(x, Y ) I X ~ O . , + O  

( 2 )  

( 3 )  
with 

E, = ~ J E S : ~  - D D, = a/ax D, = a /ay  s 
= JE  sbZ 

6 

and 

f ( x ,  y )  = 2 exp(y) sinh(x)/(l + 2 exp(y) cosh(x)) 

g ( x ,  y )  = 2 exp(y) cosh(x)/(l + 2 exp(y) cosh(x)). 

The summation over 6 is over the nearest neighbour of g. Using the Van der Waerden 
identities for the spin-1 Ising system and neglecting correlations between different spins, 
one can then show that 

Equations (4) and ( 5 )  extend (10) and (11) of our earlier work (Tucker 1988) to the 
anisotropic case. In order to study the second-order phase transitions and the tri-critical 
points we follow the work of Kaneyoshi (1986) and expand the right-hand side of (4) 
and ( 5 )  as power polynomials in m. That is 

m = A(q)m + B(q)m3 + C(4)m’ 

q = A ’ ( q )  + B’(q )m2  + C’(q)m4 
(7) 

(8) 
where the coefficientsA(q), B(q) etc are dependent on q in addition to temperature and 
the parameters a and a‘. In particular we find 

< ( r  - 2 ) / 2  

p = o  

( r  - 3 ) ! ( r  - 2 - 2p)  
-4 2 F r , r -  2 - 2p p ! ( r  - 2 - p ) !  
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( r  - 1 ) ! ( r  - 2 p )  
Fr,r - 2p 

< ( r - 2 ) / 2  

p = o  

( r  - 3 ) ! ( r  - 2 - 2p)  
- 8  c Fr,r - 2 - 2p p ! ( r  - 2 - p ) !  

( r  - 5)!(r - 4 - 2p)  
p ! ( r  - 4 - p ) !  

- 8  E Gr,r - 2 - 2 p  G r , r - 2 p  p ! ( r  - 2 - p ) !  

< ( r  - 4) /2  

+ 16 Fr,r- 4 - 2p 
p = o  

s ( r  - 2)/2 

p = o  

( r  - 2 ) !  r!  

S ( r - 4 ) / 2  ( r  - 4 ) !  + 16 E G r . r - 4 - 2 p  
p = o  p ! ( r  - 4 - p ) !  

where 

z ! ( l  - q ) z - r q r - l  
2'(r - l ) ! ( z  - r ) !  

z!(l - q y q r - 3  

2!(1 - q y q r - 5  

z!(l - q y r q r  
2'Y!(Z - r ) !  

- z!(l - q)z-rqr-Z 
- 2!2'(r  - 2 ) ! ( 2  - r ) !  

z! ( l  - q y q r - 4  

a; = b: = 

(15) e: = 
3!2'(r  - 3 ) ! ( 2  - r ) !  

g' = 5!2'(r - 5 ) ! ( z  - r ) !  h' = 4!2'(r  - 4 ) ! ( z  - r ) !  

and 

4 exp(rpaJ) sinh(ppJ) 

4 exp(rpal)  cos(ppJ) 

F r p  = exp(/3Jzar) + 2 exp(rpaJ) cosh(pbJ) 

Grp = exp(pJzcu') + 2 exp(rpaJ) cosh(p/3J) 
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At this stage one can make contact with the work of Siqueira and Fittipaldi (1986) on 
the Blume-Cape1 model. For that model Frp and G, are independent of the subscript r 
and the coefficients A(q), A’(q), B(q) ,  B ’ (q ) ,  C(q)  and C’(q)  should reduce to their 
coefficients A,, + 1, Bo, + 4 ,  A3z, B2,, A jz  and B4z, respectively, tabulated in the appen- 
dix of that reference. Agreement is obtained except in the following cases. We find 

A13 = 3 R 2 f ( K )  + 3Rqf(2K) + % q 2 ( f ( 3 K )  + f ( K ) )  - 1 

A33 = i ( f ( 3 K )  - 3f(K)) 

A34 = R ( f ( 3 K )  - 3 f ( W  + 44(f(4K) - 2f(K)) 

B24 = 3R2(g(2K) - go) + 3Rq(g(3K) - d K ) )  + 2q2(g(4K) - go) 

and the fourth term in A16 should contain the factor R2 rather than R. (There are also 
trivial misprints in that gg(K)  should be qg(K)  everywhere and a superfluous r appears 
inA14). 

In the neighbourhood of a second-order transition line where m is small one may 
write for the state equations 

m = am + bm3 + cm5 + . . . (24) 

(25) q = qo + q1m2 + q2m4 + . . . . 
It follows, on substituting the expression for q into the right-hand side of (8) and 
performing a Taylor expansion, that 4 ,  is the solution of 

40 = A’(q0) (26) 
and q ,  and q 2  are given by 

Likewise from (7) and (24) one finds that 

As pointed out for example by Benayad et a1 (1985), the second-order transition line is 
given by a = 1 and b < 0, and a tri-critical point ocurs at a = 1, b = 0 if c < 0. Using these 
criteria we have located the position of the tri-critical points for the honeycomb, square 
and cubic lattices for several values of LY. The coordinates of the tricritical point in the 
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Table 1. Coordinates of the tri-critical points in the ((U', 1//3J) plane. 

z = 3  z = 4  z = 6  

LY LY' 1/PJ (U' 1/PJ (U' 1/PJ 
~~ ~ ~ 

0.0 0.475 0.68 0.472 1.01 0.468 1.67 
0.1 0.519 0.74 0.513 1.11 0.506 1.85 
0.2 0.563 0.81 0.554 1.21 0.543 2.01 
0.3 0.606 0.87 0.594 1.30 0.580 2.17 
0.4 0.648 0.93 0.634 1.39 0.617 2.31 
0.5 0.690 0.99 0.674 1.47 0.654 2.45 

(a ' ,  1//3J) plane are tabulated in table 1 for these lattices. In the absence of bi-quadratic 
exchange ( a  = 0) the values may be compared to those obtained by other methods for 
the Blume-Cape1 model which are quoted in Siqueira and Fittipaldi (1986). In this Letter 
we have only presented numerical results for a range of bi-quadratic exchange strengths 
where the critical frontier for the second-order transition is relatively well behaved. 
However, it is hoped that the general expressions presented here will prove useful in a 
thorough investigation of the phase diagram, particularly in the regime where] + J' < 0, 
where it has been conjectured that a new type of disordered phase might exist (Kaneyoshi 
1987b). 

I am indebted to Dr T Kaneyoshi for sending me preprints of his recent work on this 
problem. 
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